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Ab initio, spatially projected generalized valence bond [GVB(SP)] calculations are reported for 
the ground and (pi-electron) excited states of allyl radical. We find that the wavefunctions of the 
ground and first excited state correspond closely to the classical valence bond description of resonant 
and anti-resonant states, ~ +_ - / ~ .  The higher states involve excitation of Rydberg orbitals, but 
even here the orbitals of the GVB(SP) wavefunctions are basically localized. The theoretical value 
obtained for the allyl resonance energy is 14 kcal in good agreement with thermochemical estimates. 
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1. Introduction 

Previously we reported the generalized valence (GVB) wavefunctions for allyl 
radical [1] and s-trans-l,3-butadiene [2]. In general, the total energies and ex- 
citation energies obtained from the GVB wavefunction were in good agreement 
with full configuration interaction (CI) results. The GVB wavefunction [3] ex- 
plicitly includes permutation symmetry operators ensuring that the total wave- 
function will have the proper spin symmetries and satisfy the Pauli principle for 
arbitrary shapes of the orbitals. In addition to obtaining good energies the hope 
here was that with no symmetry induced restrictions on the orbitals, the shapes 
of the orbitals would have physical significance and thereby lead to useful che- 
mical concepts. This has proved to be the case for most systems; however an 
examination of the results for allyl radical and butadiene suggested that for some 
states the individual orbital shapes were being restricted in order to obtain total 
wavefunctions possessing the correct spatial symmetry. This led us to consider 
generalizing the GVB wavefunction by including a projection operator ensuring 
that the total wavefunction has the correct spatial symmetry for an arbitrary set 
of spatial orbitals [2]. The resulting wavefunction is denoted as GVB(SP) where 
SP indicates spatial projection. 

In this paper we present the GVB(SP) wavefunctions for the various pi-eleetron 
states of allyl radical. As anticipated, the individual orbitals of some states are 
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very different between the GVB and GVB(SP) wavefunctions, indicating that the 
GVB orbitals were restricted by spatial symmetry requirements. We find that the 
GVB(SP) wavefunctions lead to simple chemically reasonable descriptions of the 
states of allyl radical. 

In Section 2, we shall develop the GVB(SP) wavefunction by examining the 
valence bond (VB) wavefunction and generalizing this wavefunction while re- 
taining the basic form of VB wavefunction. Section 3 presents the results of our 
calculations. Section 4 includes our interpretations of the results and comparisons 
with other results. 

2. Caleulational Considerations 

In this section, we shall develop the spatially projected Generalized Valence 
Bond [GVB(SP)] wavefunction by examining, in turn, the Valence Bond (VB) 
wavefunction, the Generalized Valence Bond (GVB) wavefunction, and the 
GVB(SP) wavefunction to demonstrate the successive generalization involved in 
these wavefunctions. Our discussion will be limited to three electron systems and 
oriented toward the pi-electron system of allyl radical. 

2.1. Valence Bond Wavefunction 

The VB wavefunction may be represented as a linear combination of bonding 
structures formed using atomic orbitals for each electron. Considering only the 
pi-electron system the three-electron system of allyl radical has two equivalent 
bonding structures usually represented by the two VB canonical structures 

These two structures correspond to the two independent ways of coupling three 
spinorbitals to form a doublet state. 

Let )G, Zc, and Z~ denote atomic orbitals located on the right, center, and left 
centers respectively. The VB wavefunction for a three-electron doublet may be 
represented as 

I]) VB = C l i p  1 ~ -  C21~2  (2a) 

(2b)  

where two orbitals in a horizontal box indicates that the orbitals are singlet 
coupled. In the VB method one optimizes the structure mixing coefficients, cl 
and c2. 

In the allyl radical pi-electron system, the two forms are equivalent; thus the 
two solutions are 

C 1 ~--- - -  C 2 (3 a) 

cl = c2, (3 b) 

referred to as the resonant and anti-resonant solutions, respectively. 
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The wavefunction corresponding to the individual terms of (2) are 

(4a) 

= d [cb,,Z,Z~Z,(c~fi - fi~)c~] (4b) 

where ~b~ represents the product of all doubly-occupied sigma orbitals and sJ is 
the antisymmetrizer. Using (4), Eq. (2) can be written as 

~ "  = ~'[r (5) 
where 

0 = c1(~ /~  - / ~ )  + c 2 ( ~ / ~ -  ~/~)  �9 (6) 

2.2. Generalized Valence Bond Wavefunction 

The GVB wavefunction is formally the same as the VB wavefunction 

d[~b oqoaqob~ocO] (7) 

except that the orbitals q~a, %,  and (Pc are solved for self-consistently (rather than 
being taken as atomic orbitals as in the VB wavefunction) and the spin coupling 
O is simultaneously optimized. Although the GVB orbitals are allowed to have 
any shape, we find that they typically concentrate each near a different carbon 
atom. In such cases, we shall denote the optimum GVB orbitals as qSl, qSc, ~b r 
indicating the location of the maximum amplitude of each orbital. 

There are two independent ways of coupling three electrons into a doublet. 
We find it convenient to use orthogonal spin functions denoting them as 

01 = (~/~ - / ~ ) ~  
(8) 

referred to as the G 1 and G2 (or GF) spinfunctions. Note that electrons 1 and 2 
are singlet coupled in 01 and triplet coupled in 02. The spin function for (7) is 

0 = C101 Jr- C202 . (9) 

It is often convenient to use the diagram 

(10) 

to represent the wavefunction ~r and the diagram 

to represent the wavefunction d [ ~ % % c p c 0 2 ] .  
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2.3. S p a t i a l l y  P r o j e c t e d  G e n e r a l i z e d  Valence B o n d  Wave func t ion  

If in the GVB wavefunction we have localized orbitals q~,, %, qh such that 
% and opt are no t  iden t i ca l  in form, then the two VB canonical structures are not 
equivalent. 
In this case the ground state GVB wavefunction will not be an equal mixture of 
these two structures as in the VB theory. Conversely if the ground state is forced 
to be an equal mixture of these two structures, the ground state wavefunction 
will not possess the correct spatial symmetry. In order that the total wavefunction 
possesses the correct spatial symmetry, with inequivalent orbitals and a general 
O, the individual orbitals must be delocalized symmetry functions, each indi- 
vidually transforming according to a particular representation of the molecular 
symmetry group. To remove such restrictions upon the shapes of the orbitals and 
still generate a wavefunction with the correct spatial symmetry we have intro- 
duced a spatial projection operator into the GVB wavefunction. 

Let P be an operator which operates only on spatial coordinates and which 
generates a state of a definite symmetry. The individual electron orbitals which 
constitute this state need not possess any particular symmetry and will possess 
components of all symmetries. The spatially projected GVB wavefunction [2, 4] 1 
is formed by letting P operate on the GVB wavefunction 

q,~vB(sP) = ptpGvB. (12) 

The spatial projection operator does not affect the spin part of the wavefunction. 
To determine the effect of introducing a spatial projection operator, we will 

use as a model the allyl pi-electron system and a spatial symmetry group con- 
taining two elements, e the identity and a the reflection through the plane bi- 
secting the system. Generalization to larger spatial symmetry groups is mathe- 
matically straightforward, but interpretations become more complicated. 

Let us first consider the effect of spatial projection upon the VB wave- 
function (2). Since the individual electron orbitals are identical atomic orbitals, 
the behavior of the electron orbitals under the spatial symmetry group is 

ez t  = Zt aZt  = Z,- 

ez~ = Zc aZc = Z~ (13) 

ez~ = Zl a z ,  = Z~ . 

The states that can be formed with these orbitals can be divided into two groups, 
those symmetric and those antisymmetric under a. (Corresponding to the B 1 and 
A2, irreducible representations, respectively, of the point group C2v for allyl 
radical.) The two independent components of the VB wavefunction behave under 
the symmetry operator a as 

i This approach was previously developed and programmed for the two-electron case by 
D. Huestis (Ph. D. Thesis, California Institute of Technology, 1973). 
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(14a) 

(14b) 

By forming linear combinations of these components, we can generate wave- 
functions which are symmetric and antisymmetric under a. 

(15) 

(16) 

Defining two spatial projection operators by 

f i a = e - ~  (17) 

we see that 
/3 s = e + o" (18) 

(19) 

(20) 

The antisymmetric spatially projected VB wavefunction (15) or (19) is identical 
to the resonant state wavefunction, and the symmetric spatially projected VB 
wavefunction (16) or (20) is identical to the anti-resonant wavefunction. Thus, for 
a three-electron doublet system, spatial projection of a VB wavefunction is 
identical in effect to optimizing the mixing of the two bonding structures. 

The GVB(SP) wavefunction is a generalization of the spatially projected VB 
wavefunction in the same way the GVB wavefunction is a generalization of the 
VB wavefunction-in lieu of atomic orbitals, the individual electron orbitals are 
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solved for self-consistently. The GVB(SP) wavefunction for a state of a particular 
symmetry has the form 

7jOVB(SP) =/5~GVa 

--P [c1 
Frequently the orbitals are found to be loc 
function will have the form 

Here ~or is in general not equivalent to ~0~, 

[ + c2 (21) 

localized, and in this case, the wave- 

acpr r ~P~ 

+ c2 q9~ qG (22) 

in contradistinction to the case for VB (atomic) orbitals [see (13)]. Thus, the two 
terms in (22) are not related by a symmetry operation and both terms must be 
included in the GVB(SP) wavefunction. For valence states, we expect ~o r and r 
to be quite similar and one spin coupling component to be the primary com- 
ponent of each wavefunction. 

2.4. The Variational Equations 

The variational equations for GVB(SP) are derived in a manner analogous to 
the usual GVB equations [3b] except that there are additional cross terms 
resulting from the symmetry operators (17) and (18). The program was con- 
structed for general Abelian groups with the basis functions belonging to ir- 
reducible representations of the symmetry group. In evaluating the one-, two-, 
three-, and four-particle density matrix elements occurring in the variational 
equations, the program expands each GVB(SP) orbital in terms of its symmetry 
components and combines the integrals corresponding to the particular overall 
symmetry required 1. 

The variational equations were expanded consistently through first order in 
the orbital corrections so that within the radius of convergence the iterations 
converge quadratically (for a fixed spin coupling). The orbitals and spin coupling 
were then iteratively optimized self-consistently for each state. Thus rather than 

H C = e C  
we solve 

B A  = - X  

where A is the correction vector, X corresponds closely to the first derivative 
(of the energy) vector (and goes to zero as convergence is obtained), and B cor- 
responds closely to the second derivative matrix [2-4] 1. (This corresponds 
essentially to the Newton method of solving for roots of algebraic equations.) 
The matrix B is generally singular since some changes in the orbitals (e.g., 
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renormalization) do not change the energy; however these variations are easily 
eliminated, leading to nonsingular B matrices to invert [2] 1. For the ground state 
at convergence the eigenvalues of the (modified) B matrix are all positive indicating 
a real minimum. Excited states have successively one or more negative eigenvalues 
since there are one or more ways of changing the wavefunction and leading to 
a lower energy. 

For the states considered herein there are no difficulties obtaining multiple 
roots of the same symmetry and the variational equations ensure rigorous upper 
bounds for the higher roots [2] 1. 

2.5. The Core Hamiltonian 

As discussed previously [4], the problem of finding a wavefunction of the form 

-~ [(/)core (~val] (23) 

may be reduced to finding the wavefunction 

dEr (24) 

if 1) the core is a product of doubly occupied orbitals and 2) if the orbitals of 
~bva ~ are taken to be orthogonal to those of q~ .... . The Hamiltonian for the valence 
orbitals wilt have the form 

Jt ~ = ~ h core (i) + ~ (25) 
i= 1 i> j r i j  

where 
g 

h core (i) = h(i) + E (2Jj - K j )  (26) 
j=l 

includes the potential due to the 9 doubly occupied orbitals of the sigma core, 

h ( i ) = � 8 9  E Z,  (27) 
a rla 

in the usual one-electron Hamiltonian, and n~ is the number of pi-etectrons. For 
allyl radical, the sigma-electron core was formed from an ab-initio HF calculation 
on the ground state of allyl cation. 

2.6. The Basis and Other Details 

The basis set consisted of a (9s, 5p) set of Gaussian functions on each carbon 
and a (4s) set on each hydrogen as suggested by Huzinaga [5 a]. This was con- 
tracted to a double-zeta basis (4s, 2p) on each carbon and (2s) on each hydrogen, 
as suggested by Dunning [5b].  The above basis was supplemented by two 
additional pi-Gaussian functions on each carbon with orbital exponents of 0.382 
and 0.0127. All calculations used the following geometry: Rcc = 1.40 ~, Rc~ = 1.08 
and all bond angles = 120 ~ 
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Table J. GVB(SP) energies for g round  and excited states of ally radical 

State Total  energy (h) Spin coupling coefficients 

C I C2 

1 2,,42 - 116.41861 1.00 0.00 
1 ZB t - 116.30143 -0 .9 3 8  0.345 
22B1 - 116.24590 0.999 - 0.027 
22A2 - 116.22125 0.999 0.003 
32Bt - 116.21743 0.999 -0 .0 3 2  
4 ZB~ - 116.14024 0.089 0.996 
3 2A2 - 116.13617 0,858 0.514 
4ZA2 - H6,135~3 0,973 - 0 . 2 3 t  
Cation (~AI)" - 116.17279 - - 

(3B2) - 116.06272 - - 

" Reference [4]. 
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Fig. I. The A2 states of allyl radical. The first two orbitals are singlet coupled in all cases except the 
3 ~A z state in which case the first two orbitals are triplet coupled. The ampli tude of the mos t  diffuse 
con tour  is 0.003.The ampli tude of each succeeding contour  is a factor of 2,i5~-4 greater or a factor 

of l0 for each three contours  
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ALLYL RADICAL 
GVB(SP) PI ORBITALS FOR B I STATES 

4A 4B 

-I 6.646 16,646 

~iiii i!/ 

Sb C 

261 

Fig. 2. The B 1 states of allyl radical. The first two orbitals are singlet coupled in all cases except the 
4 2Bt state in which case the first two orbitals are triplet coupled. The amplitudes are the same as 

in Fig. 1 

3. Results  

The lowest four pi-electron states of both  A 2 and B a symmetries were 
examined. The total energies, excitation energies, and spin couplings are sum- 
marized in Table 1. Figure 1 depicts the orbitals for the A 2 states and Fig. 2 the 
orbitals for the B a states. In Fig. t, the orbitals in the first two columns, q~, and 
qSb, are singlet coupled except for the 3 2.4 2 state, for which q~, and ~b b are triplet 
coupled. In Fig. 2, the orbitals in the first two columns qS, and q~b are singlet 
coupled except for the 4 2B 1 state, for which q~, and q5 b are triplet coupled. 

F r o m  Figs. 1 and 2, we see that  there are only two valence-like states, the 
1 2A 2 and the 1 2B 1 states. These states correspond to the resonant  and anti- 
resonant  states of valence bond  theory. All of the other  states contain one diffuse 
orbital and are designated as Rydberg-l ike states. We note  the similarity between 
the orbitals of the 3 2.4 2 state and the orbitals of the 2 2B 1 state. These states are 
the two possible symmetry  combinat ions  out  these three orbitals, analogously 
to the orbitals of 1 2/12 and 1 2B I states, which a re  also formed using the same 
orbitals. 
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4. Discussion 
4.1. Resonance Models 

In the GVB(SP) description of allyl radical, there are two valence-like states, 
which we have identified as the resonant and antiresonant states. Examining 
Figs. 1 and 2 we see that the orbitals for these states are very similar, and from 
Table 1, these two states have the same spin coupling, both being G 1 (10). In the 
GVB(SP) description, spatial symmetry differentiates between these two sta~es. 

The ground state of allyl radical is of symmetry 2A 2 and is therefore anti- 
symmetric under reflection through a plane passing through the center carbon 
and bisecting the molecule. If in (21) we imagine that % and ~o c are identical in 
form but are localized about different centers, then only considering the G l spin 
coupling, the wavefunction for the 1 :,4: state is 

T =/SA: ( ~ )  (28a) 

o r  

7 ~ = ~ -  ~ (28b) 

This is the same form as the VB resonance state and the GVB 1 2A 2 (resonance) 
state [1]. In the GVB(SP) description resonance arises from the symmetry of the 
state. To the extent (Pt and q~r differ, the second tableau in (22) is required, but 
we see from Table 1, that C: is very small and the second tableau contributes little. 

The first excited state of allyl radical has B 1 symmetry. Again imagining that 
q~a and (Pc are identical in form but localized about different centers and con- 
sidering only the G1 spin coupling in (21), the wavefunction for this state is 

7'=/3B ( ~ )  (29a) 

7 J = ~  + ~ (29b) 

This is the same form as the VB antiresonant state and the GVB 1 2B 1 (anti- 
resonant) state [l]. Antiresonance arises in the GVB(SP) description from the 
symmetry of the state. In general, (Pz and ~0 r will not have the same form and the 
second (GF) tableau must be included in the wavefunction. From Table 1, we 
see that the GF contribution for this state is small and (29) is the dominant part 
of the wavefunction. 

Let us examine the VB and GVB descriptions of these two states to compare 
the different descriptions of resonance. In the VB description there are two 
valence-like states of allyl radical, the resonant and antiresonant resonant states. 
These states are described as the antisymmetric and symmetric combinations, 
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respectively, of the VB canonical structures. The GVB results [1] also indicate 
that there are only two valence-like states of allyl radical. In fact, the GVB 
description of these two states is identical to the VB description except that self- 
consistent orbitals are used in lieu of atomic orbitals. In the GVB model the 
resonance arises from optimization of the spin coupling (given a particular set of 
orbitals), and the antiresonant state is formed using the same spatial orbitals and 
the orthogonal spin coupling. The optimum GVB orbitals for the 1 2B 1 state are 
found to be localized much as in the VB wavefunction and are consistent with 
the simple GVB model [1]. However, the optimum GVB orbitals for the 1 2A 2 
state are delocalized orbitals not the localized orbitals expected in the GVB and 
VB models. This argues against the simple GVB resonance model for describing 
the 1 2A 2 and 1 2B 1 states. However we find that using optimal localized orbitals 
in the 1 2A 2 state leads to an energy only slightly (0.88 kcal) higher in energy 
than that of the fully optimized GVB wavefunction [1]. Using these localized 
orbitals for the 1 2/12 state, the GVB orbitals for the 1 2A 2 and 1 2B 1 states are 
quite similar in form although not identical. 

We thus have arrived at three different qualitative descriptions of the 1 2A 2 
and 1 2B1 states of allyl radical but all have essentially the same form (28b) and 
(29 b), respectively. The individual orbitals used in these three sets of wavefunctions 
differ. The VB wavefunction uses atomic orbitals. The GVB wavefunction uses 
self-consistent orbitals, but spatial symmetry considerations either restrict the 
individual orbitals to be delocalized symmetry functions, or if the orbitals are 
localized, restrict the spin coupling to the resonant (or antiresonant) combina- 
tions and require the shapes of q~r and q~ to be equivalent [1]. The GVB(SP) 
wavefunction without restricting the shape of the orbitals or the spin coupling 
generates the resonant (or antiresonant) combination of structures through a 
spatial symmetry operator. 

By comparing the energy of the GVB(SP) wavefunction for the 1 2A 2 state 
with the energy resulting from the optimum wavefunction of form (10) [optimum 
orbitals but the G1 spin coupling] [1], we obtain the GVB(SP) estimate of the 
resonance energy. This GVB(SP) estimate of the allyl radical resonance energy 
is 14.3 kcal as compared to 11.4 kcal [1] for the GVB wavefunction and 15.9 kcal 
[1] for the VB wavefunction, using the same basis set for all computations. The 
experimental value for the allyl radical resonance energy is 10 +_ 1.5 kcal [7]. The 
antiresonance energy found from the GVB(SP) wavefunction for the 1 2B 1 state 
is 59.2 kcal as compared to 61.9 kcal for the VB wavefunction and 57.9 kcal for 
the GVB wavefunction. 

4.2. The Fused Ethylene Model 

Dunning [6] has proposed a model for the pi-states of butadiene that treats 
these states as arising out of combinations of ground and excited states of ethylene. 
In this model, two ethylenes are fused to form butadiene and the pi-states of 
butadiene are identified with combinations of ethylene pi-states. We found that 
this model works well for the valence states of s-trans-l,3-butadiene but were 
unable to apply this model to Rydberg states as the orbitals were found to be 
delocalized [2]. Since the GVB(SP)description of allyl radical yields localized 
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orbitals for all states, we can examine the applicability of fused ethylene to the 
pi-states of allyl radical. Allyl radical in this model is considered as a combina- 
tion of ethylene and methylene. 

The GVB(SP) description of ethylene 1-4] yields two valence like states, the  
grond (N) state 

and the lowest triplet (T) 

] r t~ceth ] 

state at 4.2 eV (vertical excitation energy). The 1 2,4 z state of allyl radical may be 
considered as arising from a combination of an N state of ethylene with a 2p-like 
pi-orbital on the third carbon (i.e., a 3B 1 methylene). 

The 1 2B I state of allyl radical would then be the combination of the T state of 
ethylene and the same third orbital, 

r ~brme [ 

Fusing the methylene and the ethylene to form allyl leads to repulsive interactions 
for the lower state and attractive interactions for the upper state (decreasing then 
the excitation energy). Readjustments in the orbitals lead then to the GVB(SP) 
wavefunction and the final energies with the excitation energy decreasing to 3.2 e.V. 

In this model the higher (Rydberg) states arise from combining the N state 
of ethylene with a 3p or 3d orbital on the methylene, leading to three excited 
states (two d orbitals are of ~ symmetry). Another set of states about 3 eV higher 
arise from coupling the T state of ethylene with the 3p and 3d orbitals. 

To better visualize the Rydberg states we will consider explicitly the resonance 
of the above states. Thus N + 3p leads to 

~l 4'c I• 4, ~c 1 
~3p, I 

(30) 

Since the 3p orbital is diffuse, we can as a first approximation assume that 

~b3p r ~ ~b3p t = ~b3p. (31) 
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In this case the wavefunction (30) leads to 

(32) 

corresponding essentially to an N state core for the + sign and a T state core 
for the - sign. Thus the third state of allyl is expected to be of the form (30) with 
a + sign. This conclusion is correct and the orbitals of the 2 2B 1 state (Fig. 2) 
correspond to the form expected from (30). 

The next excited state would be obtained by combining the N state of ethylene 
with a 3d orbital on the methylene 

t (33) 

There are two 3dn orbitals to be used in (33). For 3dxr (taking the molecule to 
be in the yz plane with z as the symmetry axis) we have 

and (33) becomes 
q53a, ~ - qb3a . ~ q53a (34) 

63. I 43. 1 
(35) 

Thus it is the minus combination in (33) that leads to an N-like ethylene state 
in (35). This wavefunction leads to the 2 A 2 state of allyl, the next excited n state. 
For the other 3dn orbital (3dx,) we have 

so that (33) reduces to 
~)3dl ~ ~b3dr 

4,1 4,c1+ - 4,. ,~c] 
(36) 

leading to the 3 2B 1 state.  From Figs. 1 and 2 we see that the 2 2.42 and 3 2Bj 

states have these characters. 
The higher states shown in Figs. 1 and 2 correspond to the antiresonant 

combinations of (32), (35), and (36) or equivalently in the fused ethylene model 
to use of the T state on the ethylene. 

In the 3 2A 2 state, the two tight orbitals are triplet coupled and may be con- 
sidered as an ethylene T state core. Since the ethylene T state core has A 2 sym- 
metry and the diffuse orbital is almost orthogonal to the tight orbitals, the diffuse 
orbital must have B 1 symmetry and should be a 3pn orbital. The difference 
between the 2 2B~ and the 3 2.42 states is in the cores, the first being an ethylene 
N state and the second an ethylene T state. We note that the difference in energy 
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Table 2. Comparison of GVB, GVB(SP), and CI energies for the ground 
and excited states of allyl radical 

State 
GVB "'b GVB(SP) Full CI a'b 

Total energy Excitation Total energy Excitation Total energy Excitation 
(hartrees) energy(eV) a (hartrees) energy(eV) a (hartrees) energy(eV) a 

1 2 A 2  -116.416438 0.0 -116.418612 0,0 
1 2B 1 - 116.297120 3.249 - 116.301432 3,188 
2 2 B 1  -116.237380 4.872 - 116.245897 4.702 
22A2 -- -- -- 116.221249 5.374 
3 2 B ~  -116.209966 5.610 - 116.217433 5.474 
42B1 -- - -116.140243 7.575 
32A2 -- - - 116.136173 7.686 
4ZA2 - - - 116.135127 7.713 
Cation(1Al) c - 116.15790 7.035 - 116.17279 6.689 
Cation(3Bz) ~ - 116.06065 9.682 -116.06272 9.684 

-116.421089 0.0 
- 116.303426 3.203 
-116.248310 4.702 
- 116.222188 5.412 
-116.219937 5.474 
- 116.145124 7.509 
- 116.137979 7.709 

- 116.173420 6.740 
-116.06273 9.752 

a Reference [1]. 
b All calculations were performed using the same basis set. 

Reference [4]. 
d 1 h = 27.2117 eV. 

Table 3. Excitation energies for allyl radical (all values in eV) 

State GVB(SP) GVB" CIa Peyerimhoff 
and Buenker b 
(ab initio CI) 

Semi-empirical 
CI ~ 

12A2 0 0 0 0 0 
1 2B 1 3.19 3.25 3.20 3.79 2.43 
2 2B 1 4.70 4.87 4.70 8.0 9.79 
22A z 5.374 5.412 11.66 12.492 
3 2B 1 5.474 5.474 14.35 
3 2.4 z 7.686 7.701 12.942 

a Reference [l]. 
b Reference [10]. 
c Reference [ l l ] .  

b e t w e e n  t h e s e  t w o  s t a t e s  is 2.99 e V  w h i l e  in  a l ly l  c a t i o n  t h e  e x c i t a t i o n  e n e r g y  o f  

t h e  3B 2 s t a t e  ( c o r r e s p o n d i n g  to  t h e  e t h y l e n e  T s t a t e )  o v e r  t h e  1A 1 ( c o r r e s p o n d i n g  

t o  t h e  e t h y l e n e  N s t a t e )  is 3.00 eV, in  e x c e l l e n t  a g r e e m e n t .  

4.3. R y d b e r g - L i k e  E x c i t e d  S t a t e s  

T a b l e  2 c o n t a i n s  a c o m p a r i s o n  of  G V B ,  G V B ( S P ) ,  a n d  full  (or  c o m p l e t e  

w i t h i n  t h e  b a s i s  set)  C I  c a l c u l a t i o n s  o n  t h e  a l ly l  r a d i c a l  p i - e l e c t r o n  sys tem.  All  

c a l c u l a t i o n s  w e r e  p e r f o r m e d  u s i n g  t h e  s a m e  b a s i s  set.  T h e  a g r e e m e n t  a m o n g  t h e  

t h r e e  sets  o f  c a l c u l a t i o n s  is q u i t e  g o o d  b o t h  w i t h  r e g a r d  to  t o t a l  e n e r g i e s  a n d  

e x c i t a t i o n  ene rg ies .  W e  n o t e  t h a t  for  R y d b e r g  s ta tes ,  t he  d i f f e rence  b e t w e e n  t h e  

G V B  a n d  G V B ( S P )  e n e r g i e s  is t h e  g rea t e s t .  T h e  G V B ( S P )  a l l o w s  a n  e x c i t a t i o n  

to  b e  l o c a l i z e d  n e a r  o n e  c e n t e r  a n d  a d e s c r i p t i o n  o f  t h e  s t a t e  in  t e r m s  o f  l o c a l i z e d  
o r b i t a l s .  T h e  G V B  d e s c r i p t i o n  is in  t e r m s  o f  d e l o c a l i z e d  s y m m e t r y  o r b i t a l s  for  

t h e  R y d b e r g  s ta tes .  T h e  G V B ( S P )  e n e r g y  for  R y d b e r g  s t a t e s  is in  exce l l en t  ag ree -  

m e n t  w i t h  t h e  full  C I  resu l t s .  
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The 2 2B 1, 3 2B 1, and 2 2A 2 all have a rather diffuse orbital and have been 
described as Rydberg states. To test this assignment further, the quantum defects, 
~, for these states were calculated using 

~ .  = A - R / ( n -  C) 2 

where E, is the energy of the state, A is the energy of the ion taken as the 
GVB(SP) energy from Ref. 1, and ~ the quantum defect. We obtain 

2 2B 1 : ~ = 0 .38  (3p~) 

3 2B i : ~ = -0 .35  (3drc) 

2 2A 2 : ~ --- - 0 . 2 1  (3d~). 

For p-like Rydberg states, ~ is typically 0.50 [8] which is consistent with the 
assignment of 2 2B 1 as the upper state of the 2prc~3pzc excitation. For d and 
f-like Rydberg orbitals ~ is typically < 0.10. However our basis set only includes 
pro functions leading to a poor description of the 3dzc orbitals and hence a 
negative sign of ~ for the 2 2A 2 and 3 2B 1 s tates .  

Ionizing the diffuse orbital from the 3 2A 2 state leads to the 1 3B 2 state of allyl 
cation since the two orbitals are triplet coupled. Using the GVB(SP) energy for 
the 1 3B 2 state [1], we obtain a value of 0.39 for the quantum defect (relative to 
n=3) .  Thus the 3 2A 2 state corresponds essentially to a 2p~z~3pzc excitation 
from the 1 2B i state .  This is the same as the 2 2B 1 state, the difference between 
these two states being in the spin coupling of the core orbitals. The calculated 
quantum defects for these states differ by only 0.01. 

Table 3 contains a comparison with other results. The GVB(SP) results com- 
pare very favorably. The basis set used by Peyerimhoff and Buenker [9] did not 
contain diffuse function accounting for their poor description of the 2 2B 1 state .  
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